1 Introduction

The Metropolis algorithm is a method which can be used for numerically sim-
ulating a 2D Ising model. The essential idea is that we begin with a random
lattice of spins, either +1 or —1, and allow them to thermally equilibrate.
We can simulate this by picking a random spin, and seeing if we should flip
it or not. If the energy change associated with flipping the spin is negative,
we accept the flip because we wish to move towards an energy minimum.

If the energy associated with the flip is positive, on the other hand, we
need to be careful. According to statistical mechanics, that probability as-
sociated with this flip is the Boltzmann factor P = e #2F,

So we randomly generate a number between zero and one, and check
whether flipping the spin will change the energy by an amount higher or
lower than the Boltzmann factor of that associated energy change. If the
random number happens to be smaller than the Boltzmann factor, we accept
the new configuration (this simulates the process in nature of a certain spin
spontaneously changing with a certain probability). If not, we just keep the
old configuration.

One iteration of this process is called a Monte Carlo sweep. Once several
(often thousands) of sweeps have been performed, we can look for steady
state behaviour of certain observables, like the energy
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We can get better results if we treat these quantities as statistical random
variables, and perform several iterations of Monte Carlo simulations in order



to determine the expectation values of these quantities, which are given by
the usual formula

(O) = Z O;P(0,)

2 Analytic Solutions for a 2 x 2 Lattice

We compute several quantities of interest: the energy E of the lattice, the
magnetization M, the specific heat at constant volume C'y,, and the magnetic
susceptibility .

First, all possible configurations of spins and their associated energies are:
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Where the energies are computed via H({s;}) = —J >_; y sis; —h D2, si,
and with the convention that 1 represents a spin s = 1, and | represents a
spin s = —1. Thus the partition function is
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Using this we can compute analytical expressions for £, M, Cy, and x
in the 2 x 2 case using the equations in section 1:
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3 Numerical Simulation Using the Metropo-
lis Algorithm

First, a visual animation of the system is shown in figure 1 for a 100 x 100
lattice.

Figure 1: A 100 by 100 lattice of spins evolving through time with J = 1,
h =0, and kgT = 1. The top left is at 1000 iterations, the top right is 5000,
and the bottom is 20000. Small magnetic pockets are created.



For the remainder of the report we shall set J = h = 1 unless otherwise
specified. We can check the validity of our scheme by comparing the analytic
2 x 2 solution with our numerical results. Setting the temperature, J, and h
all to 1, we obtain the following after 50 Monte Carlo cycles:

Numerical Result after 50 Cycles
E M CV X
-2.999 0.999 0.003 7x 107
Analystical Result
E M CV X
-3 1 0 0

This is displayed in figure 2, where I have plotted the observables as a
function of the number of Monte Carlo sweeps.
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Figure 2: The observables with one Monte Carlo simulation (this is why Cy
and y are zero here; there is only one value of £ and one value of M so there
is no way to do statistics with them). E and M approach the desired values
of -3 and 1, respectively.

However, we can do better than the plots shown in figure 2. In figure 3,
we create the same plots, however this time we do 100 entire Monte Carlo
simulations. For each simulation, we average the values of F and M at each
number of cycles, creating a smoother plot. Furthermore, by doing this we
have 100 values of £ and M at each number of cycles, and hence we can
calculate their variance in order to determine C'y and Y.
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Figure 3: The observables, with each point on the graph averaged over 100
separate Monte Carlo simulations. Again we see the results going towards
the expected analytical values.

Each quantity approaches a very close match with its numerical counter-
part, indicating that the numerical results are trustworthy.

Finally, we investigate the behaviour of the observables as functions of
temperature. In figure 4 we plot the four observables of interest. Unfortu-
nately it was too computationally taxing to go above a 2 x 2 lattice without
sacrificing grid spacing or the averaging process. However, the agreement
with the analytical solutions from section 2 match very well with the simu-
lation results.



Energy ~ Magnetization

0 1 " =
0.9
-0.5
. 0.8
=
B =
3 0.7
o6 4
15
0.5 me
-2 0.4 ' ' : :
0 0 2 4 6 8 10
kg T
Heat Capaticity Magnetic Susceptibility
0.5 0.05
0.04
0.03
=
0.02
0.01
0
0 2 4 6 8 10
kT

Figure 4: The observables versus Temperature in a 2 x 2 lattice. The red line
is the analytic solution. The blue is the numerical result. 500 Monte Carlo
simulations were performed, each with 40 iterations.

Now we turn our attention to a larger 20 x 20 system. In an attempt
to determine the minimum number of Monte Carlo cycles after which the
system is in equilibrium, we plot in figures 5 and 6 the same observables at
temperatures kgT' = 1 and kgl = 2.4, respectively. In both plots, we start
with a random lattice of spins, and use J = h = 1.
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Figure 5: The number of Monte Carlo cycles it takes for the 20 x 20 lattice
to reach a steady state at temperature kgT' = 1 is approximately 3000.
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Figure 6: The number of Monte Carlo cycles it takes for the 20 x 20 lattice to
reach a steady state at temperature kg1 = 2.4 is approximately 3000. But
notice that this isn’t a true steady state; there are still fluctuations in all of
the observables. This is to be expected at higher temperatures.

We see that, as expected, the energy decays to a minimum and the mag-
netization goes to 1, since there is a magnetic field and the temperatures are
sufficiently low (although in the kT = 2.4 plot we can already see some
fluctuations). In figures 7 and 8, we construct the same plots, but instead of
starting with a random lattice of spins, we start with all of the spins anti-
aligned with the magnetic field. It takes significantly longer for the system
to reach its steady state, as one would expect.
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Figure 7: The system takes approximately 40000 Monte Carlo cycles to equi-
librate at temperature kg1 = 1 when all the spins begin anti-aligned with
the magnetic field. Notice that the spins all start anti-aligned so the abso-
lute value of the magnetization must be 1. As they start flipping to align
with the magnetic field, the absolute value of magnetization fluctuates, until
eventually they all align, which is demonstrated by the curve returning to 1.
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Figure 8: The system actually settles down faster at a higher temperature
when the spins all begin anti-aligned to the magnetic field. It only takes
about 5000 Monte Carlo cycles at kg1 = 2.4 for the system to settle (again,
it does not reach a true equilibrium state as there are fluctuations in the
observables). Again we see the magnetization start at 1, fluctuate while the
spins start flipping, and then return to 1 as they start to align with the
magnetic field.

Since starting with anti-aligned spins takes far more cycles, we will restrict
ourselves to the case of randomly generated spins and conjecture that they
reach equilibrium after 4000 cycles, to be on the safe side.

We can also consider the number of accepted configurations as a function
of the number of cycles. The cases T'=1 and T' = 2.4 are plotted in figure
9.
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Figure 9: The number of accepted configurations by the £ cycle.

The number of accepted configurations for low temperatures tends to
level off to a constant value, while the accepted configurations for a higher
temperature tends to increase linearly after a certain number of cycles. This
makes sense; in the low temperature regime, the spins can align with the
magnetic field A~ = 1, where it is unlikely that a spin will be flipped again
because the system has reached equilibrium (see figure 5). On the other hand
in the high temperature regime, the spins tend to align with the field but
still fluctuate, allowing more configurations (see figure 6).

Now we can compute the probability P(E) of the previous system with
these temperatures. In figure 10, we see a histogram of the energies and their
corresponding probabilities of occuring at kgT = 1. A similar histogram is
shown in figure 11, but with kg7 = 2.4. To create these histograms, we
ran 100 Monte Carlo simulations, each performing 6000 sweeps. We only
kept from 4000 sweeps onward to ensure that we had allowed the system to
stabilize.
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Figure 10: One the left is the histogram of energy probabilities at kg1 = 1.
Almost all energies are precisely -3. On the right is the plot of the variance
(which is essentially zero). In this regime of large numbers of cycles, the
variance agrees with the histogram.

Coufiguration Probability at kT = 2.4 EBuergy Variance at kT = 2.4

|
y [N

2 |

!

1ol
Wl
. F‘WM \’\'.
i Y

UWWM |
T ‘»r

16
4000 4200 4400 4600 480D 5000 5200 5400 5600 5800 6000
Oycles

Figure 11: The histogram of energy probabilities at kgT = 2.4 is on the
left. The energies are far more spread out than they were at kg1 = 1; in
fact, they look to be approaching a normal distribution. Notice that on the
right, the variance of the energy in this cycle regime corresponds nicely to
the histogram (the energy fluctuates according to both the histogram and
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4 MATLAB Code

clear;clc

%Simulation parameters
L = 100; M = 100; J =

)

ig [1]; %linspace (0,10,100)
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N = L*M; %Number of spins

sweepsPerSimulation = 50000; %Iterate a large amount more
than the number of spins
numberO0fSimulations = 1;

%Define lots of empty arrays/matrices

E_static = zeros(numberOfSimulations,length(kT));
M_static = zeros(numberOfSimulations,length(kT));
Chi = zeros(1l,length(kT));

C = zeros(1l,length(kT)) ;

E_transient = zeros(numberOfSimulations,sweepsPerSimulation);
M_transient zeros (numberOfSimulations , sweepsPerSimulation) ;
C_transient zeros (1, sweepsPerSimulation) ;

Chi_transient zeros (1, sweepsPerSimulation) ;

acceptedConfigs = zeros(l,sweepsPerSimulation); counter = 0;

for 1 = 1:1length(kT) %Perform Monte Carlo at each temperature
beta = 1/kT(1);

for p = 1l:number0OfSimulations JPerform certain amount of
simulations

%Begin Monte Carlo
x = 1:L; y = 1:M; [X,Y] = meshgrid(x,y); %Mesh grid
for plotting later

%Startw with empty lattice
Snew = zeros(L,M);

%Fill the lattice with random spins
for i = 1:L
for j = 1:M
Snew(i,j) = RS;
end
end

for k = 1l:sweepsPerSimulation
%Begin with an empty L by M lattice

S = Snew;

%Select a random spin from the lattice

13



47 n = randi(L,1); m = randi(M,1);

48 s = S(n,m);

49

50 Eb = Espin(S,n,m,L,M,J,h); %Energy in this

configuration of spins

52 %#Change the spin s_i |--> -s_i

53 Strial = S;

54 Strial(n,m) = -s;

56 %#Calculate the energy from the trial
configuration and

57 %the change in energy from the old configuration

58 Et = Espin(Strial ,n,m,L,M,J,h); %trial energy

59 dE = Et - Eb; ’%Change in energy due to this flip

60

61 %See if the new lattice is acceptable of not

62 Pacc = exp(-beta * dE); r = rand;

63 if (dE < 0) || (r < Pacc)

64 Snew = Strial; %Keep the new lattice, keep dE

65 counter = counter+1;

66 acceptedConfigs (k) = counter;

67 else

68 Snew = S;

69 dE = 0; %Keep the old lattice, dE must be
zero

70 acceptedConfigs (k) = counter;

71 end

72

73 %Animation

74

75 if rem(k, 1000)==

76 figure (1)

77 hold on

78 pcolor (X,Y,Snew);

79 drawnow;

80 title(’Magentization of Spin Lattice’)

81 end

82

83

84 %0nly measure the observables after they have had
a chance

85 %to equilibrate (i.e. after the desired number of

cycles)
86 if k == sweepsPerSimulation
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90
91
92
93

94

98

99
100
101
102
103
104
105

106

107

108
109
110
111
112

E_static(p,1l)
M_static(p,1l)
end

H(Snew,L,M,J,h); %Per spin
Mmean (Snew) ; %Per spin

%Transient part (Plot this vs. number of cycles)
E_transient(p,k) = H(Snew,L,M,J,h);
M_transient (p,k) Mmean (Snew) ; %Mmean (Snew) ;

end
end
%Calculate observables versus number of cycles
Energy = mean(E_static);
Magnetization = mean(M_static);
C(l) = var(E_static(:,1)) .* beta”2; JReally C/k
Chi(l) = var(M_static(:,1)) .* beta;
end

%For plotting C and Chi versus cycles

for k = 1l:sweepsPerSimulation
C_transient (k) = (mean(E_transient(:,k)."2) - mean(
E_transient(:,k))."2) * beta”2;
Chi_transient (k) = (mean(M_transient (:,k)."~2) - mean(
M_transient(:,k)).~2) * beta;

end

%Plot number of accepted configurations vs cycles

hi

figure (1)

plot (1:sweepsPerSimulation, acceptedConfigs)

title (’Number of Accepted Configurations, $T=1$’, °
Interpreter’, ’LaTeX’)

xlabel (’Cycles’)

ylabel (’Configurations Accepted’)

5}

%Plot probability of configuration

hi
E_stable = E_transient (:,4000:end) ;
figure (2)
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130
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histogram(E_stable./N, ’Normalization’, ’probability’)

xlabel (’$E$’, ’Interpreter’, ’LaTeX’)

ylabel (’$P(E)$’, ’Interpreter’, ’LaTeX’)

title([’Configuration Probability at $k_BT =$ ’, num2str (kT)
i .

>Interpreter’, ’LaTeX’)

5 figure (3)

plot (4000:6000, var(E_stable)/N)
xlabel(’Cycles’, ’Interpreter’, ’LaTeX’)

; ylabel (’$\sigma_E~2$’, ’Interpreter’, ’LaTeX’)

title([’Energy Variance at $k_BT =$ °’, num2str(kT)],
>Interpreter’, ’LaTeX’)
hY

%Plot observables vs cycles

hi

figure (4)

subplot (2,2,1)

plot (1:sweepsPerSimulation, mean(E_transient)./N, °’b’)
title (’Energy’)

xlabel (’Cycles’, ’Interpreter’, ’LaTeX’)

ylabel (’$E/N$’, ’Interpreter’, ’LaTeX’)

subplot (2,2,2)

s plot (1: sweepsPerSimulation, mean(M_transient), ’b’)

title (’Magnetization’)

s xlabel (’Cycles’, ’Interpreter’, ’LaTeX’)

ylabel (’$\langle |M| \rangle / N$’, ’Interpreter’, ’LaTeX’)

subplot (2,2,3)

plot (1:sweepsPerSimulation, C_transient./N, °’b’)
title (’Heat Capaticity’)

xlabel(’Cycles’, ’Interpreter’, ’LaTeX’)

ylabel (’$C_V/(Nk_B)$’, ’Interpreter’, ’LaTeX’)

subplot (2,2,4)

plot (1:sweepsPerSimulation, Chi_transient, ’b’)
title(’Magnetic Susceptibility’)

xlabel (’Cycles’, ’Interpreter’, ’LaTeX’)

ylabel (’$\chi/N$’, ’Interpreter’, ’LaTeX’)

bt
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190
191
192
193
194
195
196
197
198

199

%Plot observables vs temperature

figure (5)

subplot(2,2,1)

plot (kT, Energy./N, ’b’)

title (’Energy’)

xlabel (’$k_BT$’, ’Interpreter’, ’LaTeX’)
ylabel (’$E$’, ’Interpreter’, ’LaTeX’)

subplot (2,2,2)
plot (kT, Magnetization, ’b’)

s title (’Magnetization’)

xlabel (’$k_BT$’, ’Interpreter’, ’LaTeX’)

ylabel (’$\langle |[M| \rangle / N$’, ’Interpreter’,

subplot (2,2,3)

plot (kT, C./N, ’b’)

title(’Heat Capaticity’)

xlabel (’$k_BT$’, ’Interpreter’, ’LaTeX’)
ylabel (’$C_V/k_B$’, ’Interpreter’, ’LaTeX’)
ylim ([0,2])

subplot (2,2,4)

plot (kT, Chi, ’b’)

title (’Magnetic Susceptibility’)

xlabel (’$k_BT$’, ’Interpreter’, ’LaTeX’)
ylabel (’$\chi$’, ’Interpreter’, ’LaTeX’)

%Plot Numerical vs Analytical
h{

E_true = zeros(l,length(kT));
M_true zeros (1,length (kT));
Cv_true = zeros(l,length(kT));
Chi_true = zeros(1l,length(kT));

s for i = 1:1length(kT)

beta = 1/kT(i);

17
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E_true(i) = E_analytic(beta,J,h,N);

M_true (i)

Cv_true(i) =

Chi_true (i) =
end

figure (4)
subplot (2,2,1)

226 hold on
plot (kT, Energy./N, ’b’)

s plot (kT, E_true,

hold off
title (’Energy’)
xlabel (’$k_BT$’,

ylabel (’$E$’, ’Interpreter’,

subplot (2,2,2)
hold on

plot (kT, M_true,
hold off

’I")

>Interpreter’

s plot (kT, Magnetization, ’b’)

)r))

title(’Magnetization’)

xlabel (’$k_BT$’,
ylabel (’$\langle

subplot (2,2,3)

1+ hold on

plot (kT, C./N, °’b
plot (kT, Cv_true,
hold off

xlabel (’$k_BTS$’,
ylabel (’$C_V/k_B$
ylim ([0,0.5]1)

subplot (2,2,4)

1 hold on

>Interpreter’

IM| \rangle / N$’,

”)

)r))

s title (’Heat Capaticity’)

>

>

’Interpreter’,

7y Y INEEEREQEEE Y |

plot (kT, Chi, ’b’)

s plot (kT, Chi_true

hold off

xlabel (’$k_BT$’,
ylabel (’$\chi$’,
ylim ([0,0.05])
hY

s )rl)

>Interpreter’

s title (’Magnetic Susceptibility’)

>

’Interpreter’,
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M_analytic(beta,J,h,N);
Cv_analytic(beta,J,h,N);
Chi_analytic(beta,J,h,N);
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%Analytic expression for the energy of the lattice (2x2 case)
function [result] = E_analytic(beta,J,h,N)

result = -(1/Z(beta,J,h)) * ((8*J+4*h)*exp(betax(8*xJ+4xh)) +

8*h*xexp (2xbeta*h) - 16*xJ*exp(-8*xbeta*J) - 8xh*exp(-2xbeta
*h) o
+ (8%J - 4xh)x*exp(betax(8xJ-4xh))) / N;

end

%Analytic expression for the mean magnetization of the
lattice (2x2 case)
function [result] = M_analytic(beta,J,h,N)

result = 1/(beta * Z(beta,J,h)) * (4*betaxexp(beta*x(8*J+4xh))
P ooo
8*betaxexp (2xbeta*h) + 8xbeta*exp(-2*betaxh) +
4xbetaxexp(beta*(8*xJ-4xh))) / N;

283 end

289
290

291

292

295
296
297
298
299

300

function [result] = Cv_analytic(beta,J,h,N)

- result = (((8*xJ+4xh) "2*xexp(beta*x(8xJ+4*h)) +

16*xh~2xexp (2xbeta*h) - 128*J 2*xexp(-8*beta*xJ) - 16*xh~2%
exp (-2*betaxh)

+ (8*%J - 4%h) "2*exp(beta*(8%J-4*h))) * Z(beta,J,h) -
((8xJ+4xh)*exp (beta*(8xJ+4*h)) +

8xh*exp (2*beta*h) - 16xJxexp(-8*beta*xJ) - 8*h*xexp(-2*beta
*h) c
+ (8*%J - 4xh)x*exp(betax(8*xJ-4xh)))~2) / Z(beta,J,h) "2 x*
beta~2/N;

end
function [result] = Chi_analytic(beta,J,h,N)
result = ((16*beta”2*exp(betax(8*J+4xh)) +

16*beta”2*exp (2*beta*h) + 16xbeta~2%exp(-2*%betaxh) +
16*xbeta”~"2*exp (beta*x(8*J-4*h)))*Z(beta,J,h) -

19



301 ((4*betaxexp(beta*(8*xJ+4*h)) +

302 8xbetaxexp (2*xbeta*xh) + 8*betaxexp(-2*betax*h) +

303 4xbeta*exp(beta*x(8xJ-4xh)))) "2 ) / (beta * N~2 x Z(beta,lJ
,h) "2);

304

305 end

306

307 hAnalytic partition function (2x2 case)

s0s function [result] = Z(beta,J,h)

309

310 result = exp(beta*x(8xJ+4xh)) + 4*xexp(2*betaxh) + 4 + 2x%exp
(-8*betaxJ)

311 + 4xexp(-2*betax*h) + exp(beta*x(8*J-4%h));

313 end

315 sHamiltonian, J * sum_{i,j}(s_i*s_j) - h * sum_i(s_1i)
316 function [result] = H(S,L,M,J,h)

318 %Sum over "nearest neighbours" at the spin S(n,m). Recall

that
319 % a=mn-1, b = n+l, ¢ = m-1, d = m+1.
320 neighbours = @(n,m) S(n,m)*S(a(n,L),m) + S(n,m)*S(b(n,L),m) +

321 S(n,m)*S(n,c(m,M)) + S(n,m)*S(n,d(m,M));

322

323 %4Sum over all nearest neighbors for each spin in the lattice

324 hand sum over all spins. The factor of 1/2 accounts for the
double counting.

56 P = 0; G = 0;

327 for i = 1:L

328 for j = 1:M

329 P = P + neighbours(i,j);
330 G =G + S(i,j);

331 end

332 end

333

331 result = -1/2 * J*xP - h*G;
335

336 end

338 hEnergy of a single spin S(n,m)
330 function [result] = Espin(S,n,m,L,M,J,h)

20



341

342
343
344
345

346

349

%Sum over "nearest neighbours" at the spin S(n,m). Recall
that

% a =n-1, b = n+l, ¢ = m-1, d = m+1.

%The factor of 1/2 accounts for the double counting.

neighbours = (S(n,m)*S(a(n,L),m) + S(n,m)*S(b(n,L),m) +
S(n,m)*S(n,c(m,M)) + S(n,m)*S(n,d(m,M)));

7 G = S(n)m);

result = -J*neighbours - h*G;

end

3 %yMean magnetization

function [result] = Mmean(S)
s result = abs(mean(mean(S)));

358 end

%The following four functions allow me to implement the
periodic boundary
hconditions

> function [result] = a(a,L)
if n == 1
result = L;
else
result = n-1;
end
end
function [result] = b(n,L)
if n == L
result = 1;
else
result = n+1;
end
end
; function [result] = c(m,M)
rif m == 1
result = M;
else
result = m-1;
end
end
function [result] = d(m,M)
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389
390
391
392
393
394
395
396
397
398

399

result = 1;
else

result = m+1;
end
end

%“Random spins, either -1 or

function [result] = RS
X = rand;
if x<0.5
result = -1;
else
result = 1;
end
end

1
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