1 Introduction

The Metropolis algorithm is a method which can be used for numerically simulating a 2D Ising model. The essential idea is that we begin with a random lattice of spins, either +1 or -1, and allow them to thermally equilibrate. We can simulate this by picking a random spin, and seeing if we should flip it or not. If the energy change associated with flipping the spin is negative, we accept the flip because we wish to move towards an energy minimum.

If the energy associated with the flip is positive, on the other hand, we need to be careful. According to statistical mechanics, that probability associated with this flip is the Boltzmann factor $P = e^{-\beta \Delta E}$.

So we randomly generate a number between zero and one, and check whether flipping the spin will change the energy by an amount higher or lower than the Boltzmann factor of that associated energy change. If the random number happens to be smaller than the Boltzmann factor, we accept the new configuration (this simulates the process in nature of a certain spin spontaneously changing with a certain probability). If not, we just keep the old configuration.

One iteration of this process is called a Monte Carlo sweep. Once several (often thousands) of sweeps have been performed, we can look for steady state behaviour of certain observables, like the energy

$$E = \frac{\partial \ln Z}{\partial \beta}$$

The magnetization,

$$M = \frac{1}{\beta} \frac{\partial \ln Z}{\partial h}$$

The heat capacity at constant volume,

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V$$

And the magnetic susceptibility

$$\chi = -\frac{1}{N} \frac{\partial M}{\partial h}$$

We can get better results if we treat these quantities as statistical random variables, and perform several iterations of Monte Carlo simulations in order to determine the expectation values of these quantities, which are given by the usual formula

$$\langle \mathcal{O} \rangle := \sum_{i} \mathcal{O}_{i} P(\mathcal{O}_{i})$$

2 Analytic Solutions for a 2×2 Lattice

We compute several quantities of interest: the energy E of the lattice, the magnetization M, the specific heat at constant volume C_V , and the magnetic susceptibility χ .

First, all possible configurations of spins and their associated energies are:

$$\begin{pmatrix} \uparrow & \uparrow \\ \uparrow & \uparrow \end{pmatrix} \qquad E = -8J - 4h$$

$$\begin{pmatrix} \downarrow & \uparrow \\ \uparrow & \uparrow \end{pmatrix} \qquad \begin{pmatrix} \uparrow & \downarrow \\ \uparrow & \uparrow \end{pmatrix} \qquad \begin{pmatrix} \uparrow & \uparrow \\ \downarrow & \uparrow \end{pmatrix} \qquad \begin{pmatrix} \uparrow & \uparrow \\ \downarrow & \downarrow \end{pmatrix} \qquad E = -2h$$

$$\begin{pmatrix} \downarrow & \downarrow \\ \uparrow & \uparrow \end{pmatrix} \qquad \begin{pmatrix} \uparrow & \downarrow \\ \uparrow & \downarrow \end{pmatrix} \qquad \begin{pmatrix} \uparrow & \uparrow \\ \downarrow & \downarrow \end{pmatrix} \qquad \begin{pmatrix} \downarrow & \uparrow \\ \downarrow & \downarrow \end{pmatrix} \qquad E = 8J$$

$$\begin{pmatrix} \uparrow & \downarrow \\ \downarrow & \downarrow \end{pmatrix} \qquad \begin{pmatrix} \downarrow & \uparrow \\ \downarrow & \downarrow \end{pmatrix} \qquad \begin{pmatrix} \downarrow & \downarrow \\ \uparrow & \downarrow \end{pmatrix} \qquad \begin{pmatrix} \downarrow & \downarrow \\ \uparrow & \downarrow \end{pmatrix} \qquad E = 2h$$

$$\begin{pmatrix} \downarrow & \downarrow \\ \downarrow & \downarrow \end{pmatrix} \qquad E = -8J + 4h$$

Where the energies are computed via $\mathcal{H}(\{s_i\}) = -J \sum_{\{i,j\}} s_i s_j - h \sum_i s_i$, and with the convention that \uparrow represents a spin s = 1, and \downarrow represents a spin s = -1. Thus the partition function is

$$Z = e^{\beta(8J+4h)} + 4e^{2\beta h} + 4 + 2e^{-8\beta J} + 4e^{-2\beta h} + e^{\beta(8J-4h)}$$

Using this we can compute analytical expressions for E, M, C_V , and χ in the 2×2 case using the equations in section 1:

$$E = -\frac{1}{ZN} \left[(8J + 4h)e^{\beta(8J + 4h)} + 8he^{2\beta h} - 16Je^{-8\beta J} - 8he^{-2\beta h} + (8J - 4h)e^{\beta(8J - 4h)} \right]$$

$$M = \frac{1}{\beta Z} \left[4\beta e^{\beta(8J+4h)} + 8\beta e^{2\beta h} + 8\beta e^{-2\beta h} + 4\beta e^{\beta(8J-4h)} \right]$$

$$C_V = \frac{1}{Nk_B T^2 Z^2} (((8J+4h)^2 e^{\beta(8J+4h)} + 16h^2 e^{2\beta h} - 128J^2 e^{-8\beta J} - 16h^2 e^{-2\beta h} + (8J-4h)^2 e^{\beta(8J-4h)}) Z - ((8J+4h)e^{\beta(8J+4h)} + 8he^{2\beta h} - 16Je^{-8\beta J} - 8he^{-2\beta h} + (8J-4h)e^{\beta(8J-4h)})^2)$$

$$\chi = \frac{1}{\beta N^2 Z^2} ((16\beta^2 e^{\beta(8J+4h)} + 16\beta^2 e^{2\beta h} + 16\beta^2 e^{-2\beta h} + 4\beta e^{\beta(8J-4h)})^2)$$

$$+ 16\beta^2 e^{\beta(8J-4h)}) Z - (4\beta e^{\beta(8J+4h)} + 8\beta e^{2\beta h} + 8\beta e^{-2\beta h} + 4\beta e^{\beta(8J-4h)})^2)$$

3 Numerical Simulation Using the Metropolis Algorithm

First, a visual animation of the system is shown in figure 1 for a 100×100 lattice.

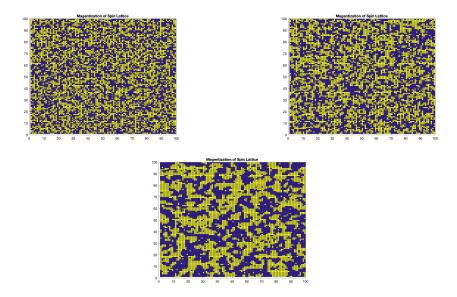


Figure 1: A 100 by 100 lattice of spins evolving through time with J = 1, h = 0, and $k_B T = 1$. The top left is at 1000 iterations, the top right is 5000, and the bottom is 20000. Small magnetic pockets are created.

For the remainder of the report we shall set J=h=1 unless otherwise specified. We can check the validity of our scheme by comparing the analytic 2×2 solution with our numerical results. Setting the temperature, J, and h all to 1, we obtain the following after 50 Monte Carlo cycles:

Numerical Result after 50 Cycles			
$\parallel E$	M	C_V	χ
-2.999	0.999	0.003	7×10^{-5}
Analystical Result			
E	M	C_V	χ
-3	1	0	0

This is displayed in figure 2, where I have plotted the observables as a function of the number of Monte Carlo sweeps.

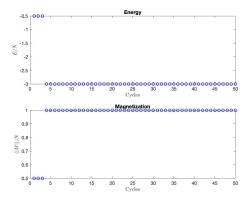


Figure 2: The observables with one Monte Carlo simulation (this is why C_V and χ are zero here; there is only one value of E and one value of M so there is no way to do statistics with them). E and M approach the desired values of -3 and 1, respectively.

However, we can do better than the plots shown in figure 2. In figure 3, we create the same plots, however this time we do 100 entire Monte Carlo simulations. For each simulation, we average the values of E and M at each number of cycles, creating a smoother plot. Furthermore, by doing this we have 100 values of E and M at each number of cycles, and hence we can calculate their variance in order to determine C_V and χ .

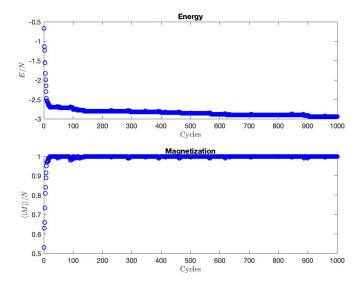


Figure 3: The observables, with each point on the graph averaged over 100 separate Monte Carlo simulations. Again we see the results going towards the expected analytical values.

Each quantity approaches a very close match with its numerical counterpart, indicating that the numerical results are trustworthy.

Finally, we investigate the behaviour of the observables as functions of temperature. In figure 4 we plot the four observables of interest. Unfortunately it was too computationally taxing to go above a 2×2 lattice without sacrificing grid spacing or the averaging process. However, the agreement with the analytical solutions from section 2 match very well with the simulation results.

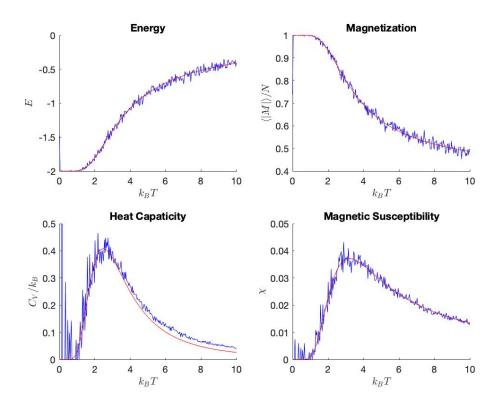


Figure 4: The observables versus Temperature in a 2×2 lattice. The red line is the analytic solution. The blue is the numerical result. 500 Monte Carlo simulations were performed, each with 40 iterations.

Now we turn our attention to a larger 20×20 system. In an attempt to determine the minimum number of Monte Carlo cycles after which the system is in equilibrium, we plot in figures 5 and 6 the same observables at temperatures $k_BT = 1$ and $k_BT = 2.4$, respectively. In both plots, we start with a random lattice of spins, and use J = h = 1.

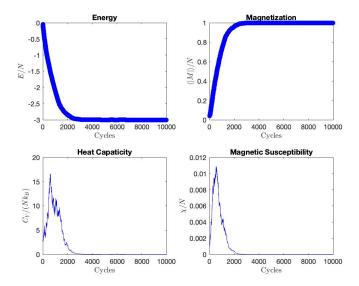


Figure 5: The number of Monte Carlo cycles it takes for the 20×20 lattice to reach a steady state at temperature $k_BT=1$ is approximately 3000.

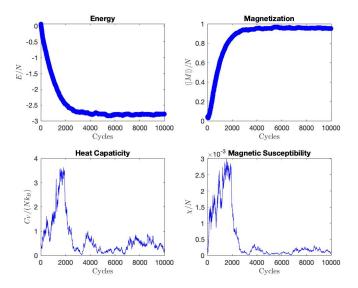


Figure 6: The number of Monte Carlo cycles it takes for the 20×20 lattice to reach a steady state at temperature $k_BT = 2.4$ is approximately 3000. But notice that this isn't a true steady state; there are still fluctuations in all of the observables. This is to be expected at higher temperatures.

We see that, as expected, the energy decays to a minimum and the magnetization goes to 1, since there is a magnetic field and the temperatures are sufficiently low (although in the $k_BT=2.4$ plot we can already see some fluctuations). In figures 7 and 8, we construct the same plots, but instead of starting with a random lattice of spins, we start with all of the spins antialigned with the magnetic field. It takes significantly longer for the system to reach its steady state, as one would expect.

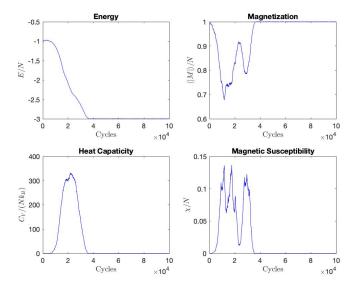


Figure 7: The system takes approximately 40000 Monte Carlo cycles to equilibrate at temperature $k_BT=1$ when all the spins begin anti-aligned with the magnetic field. Notice that the spins all start anti-aligned so the absolute value of the magnetization must be 1. As they start flipping to align with the magnetic field, the absolute value of magnetization fluctuates, until eventually they all align, which is demonstrated by the curve returning to 1.

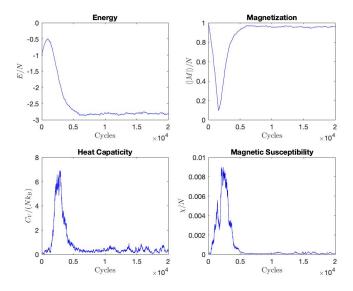


Figure 8: The system actually settles down faster at a higher temperature when the spins all begin anti-aligned to the magnetic field. It only takes about 5000 Monte Carlo cycles at $k_BT=2.4$ for the system to settle (again, it does not reach a true equilibrium state as there are fluctuations in the observables). Again we see the magnetization start at 1, fluctuate while the spins start flipping, and then return to 1 as they start to align with the magnetic field.

Since starting with anti-aligned spins takes far more cycles, we will restrict ourselves to the case of randomly generated spins and conjecture that they reach equilibrium after 4000 cycles, to be on the safe side.

We can also consider the number of accepted configurations as a function of the number of cycles. The cases T=1 and T=2.4 are plotted in figure 9.

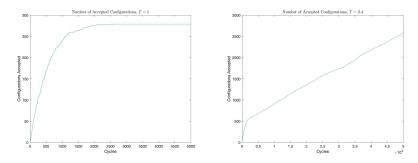
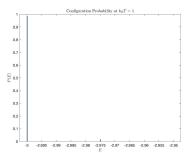


Figure 9: The number of accepted configurations by the k^{th} cycle.

The number of accepted configurations for low temperatures tends to level off to a constant value, while the accepted configurations for a higher temperature tends to increase linearly after a certain number of cycles. This makes sense; in the low temperature regime, the spins can align with the magnetic field h = 1, where it is unlikely that a spin will be flipped again because the system has reached equilibrium (see figure 5). On the other hand in the high temperature regime, the spins tend to align with the field but still fluctuate, allowing more configurations (see figure 6).

Now we can compute the probability P(E) of the previous system with these temperatures. In figure 10, we see a histogram of the energies and their corresponding probabilities of occurring at $k_BT = 1$. A similar histogram is shown in figure 11, but with $k_BT = 2.4$. To create these histograms, we ran 100 Monte Carlo simulations, each performing 6000 sweeps. We only kept from 4000 sweeps onward to ensure that we had allowed the system to stabilize.



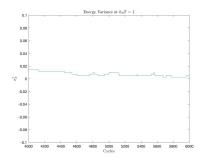
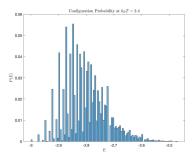


Figure 10: One the left is the histogram of energy probabilities at $k_BT = 1$. Almost all energies are precisely -3. On the right is the plot of the variance (which is essentially zero). In this regime of large numbers of cycles, the variance agrees with the histogram.



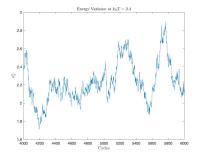


Figure 11: The histogram of energy probabilities at $k_BT=2.4$ is on the left. The energies are far more spread out than they were at $k_BT=1$; in fact, they look to be approaching a normal distribution. Notice that on the right, the variance of the energy in this cycle regime corresponds nicely to the histogram (the energy fluctuates according to both the histogram and σ_E^2 .

4 MATLAB Code

```
1 clear; clc
2
3 %Simulation parameters
4 L = 100; M = 100; J = 1; h = 0; kT = [1]; %linspace(0,10,100)
;
```

```
5 N = L*M; %Number of spins
6 sweepsPerSimulation = 50000; %Iterate a large amount more
     than the number of spins
7 numberOfSimulations = 1;
9 %Define lots of empty arrays/matrices
10 E_static = zeros(numberOfSimulations,length(kT));
11 M_static = zeros(numberOfSimulations,length(kT));
12 Chi = zeros(1,length(kT));
13 C = zeros(1,length(kT));
14
15 E_transient = zeros(numberOfSimulations, sweepsPerSimulation);
16 M_transient = zeros(numberOfSimulations, sweepsPerSimulation);
17 C_transient = zeros(1, sweepsPerSimulation);
18 Chi_transient = zeros(1, sweepsPerSimulation);
20 acceptedConfigs = zeros(1, sweepsPerSimulation); counter = 0;
21
22
for 1 = 1:length(kT) %Perform Monte Carlo at each temperature
      beta = 1/kT(1);
25
      for p = 1:numberOfSimulations %Perform certain amount of
     simulations
2.8
          %Begin Monte Carlo
          x = 1:L; y = 1:M; [X,Y] = meshgrid(x,y); %Mesh grid
30
     for plotting later
31
          %Startw with empty lattice
32
          Snew = zeros(L,M);
33
34
          %Fill the lattice with random spins
35
          for i = 1:L
36
              for j = 1:M
                   Snew(i,j) = RS;
38
              end
          end
40
41
          for k = 1:sweepsPerSimulation
42
43
              %Begin with an empty L by M lattice
              S = Snew;
44
              %Select a random spin from the lattice
46
```

```
n = randi(L,1); m = randi(M,1);
47
               s = S(n,m);
48
49
               Eb = Espin(S,n,m,L,M,J,h); %Energy in this
50
     configuration of spins
               %Change the spin s_i \mid --> -s_i
52
               Strial = S;
53
               Strial(n,m) = -s;
54
               %Calculate the energy from the trial
56
     configuration and
               %the change in energy from the old configuration
               Et = Espin(Strial,n,m,L,M,J,h); %trial energy
58
               dE = Et - Eb; %Change in energy due to this flip
59
60
               %See if the new lattice is acceptable of not
61
               Pacc = exp(-beta * dE); r = rand;
62
               if (dE < 0) || (r < Pacc)</pre>
63
                   Snew = Strial; %Keep the new lattice, keep dE
64
                   counter = counter+1;
                   acceptedConfigs(k) = counter;
66
               else
                   Snew = S;
68
                   dE = 0; %Keep the old lattice, dE must be
     zero
                   acceptedConfigs(k) = counter;
70
               end
71
72
               %Animation
73
74
               if rem(k, 1000) == 0
                   figure(1)
76
                   hold on
77
                   pcolor(X,Y,Snew);
78
                   drawnow;
                   title ('Magentization of Spin Lattice')
80
               end
82
               %Only measure the observables after they have had
84
      a chance
               %to equilibrate (i.e. after the desired number of
85
      cycles)
               if k == sweepsPerSimulation
86
```

```
E_static(p,1) = H(Snew,L,M,J,h); %Per spin
87
                   M_static(p,1) = Mmean(Snew); %Per spin
               end
89
           %Transient part (Plot this vs. number of cycles)
91
           E_transient(p,k) = H(Snew,L,M,J,h);
           M_transient(p,k) = Mmean(Snew); %Mmean(Snew);
03
94
           end
95
       end
       %Calculate observables versus number of cycles
97
       Energy = mean(E_static);
98
       Magnetization = mean(M_static);
       C(1) = var(E_static(:,1)) .* beta^2; %Really C/k
100
       Chi(1) = var(M_static(:,1)) .* beta;
102 end
104 %For plotting C and Chi versus cycles
105 for k = 1:sweepsPerSimulation
       C_transient(k) = (mean(E_transient(:,k).^2) - mean(
106
      E_transient(:,k)).^2) * beta^2;
       Chi_transient(k) = (mean(M_transient(:,k).^2) - mean(
      M_transient(:,k)).^2) * beta;
  end
108
112
113 %Plot number of accepted configurations vs cycles
114 %{
115 figure (1)
plot(1:sweepsPerSimulation, acceptedConfigs)
title ('Number of Accepted Configurations, $T=1$', '
      Interpreter', 'LaTeX')
xlabel('Cycles')
ylabel('Configurations Accepted')
120 %}
121
125 %Plot probability of configuration
126 %{
127 E_stable = E_transient(:,4000:end);
128 figure (2)
```

```
histogram(E_stable./N, 'Normalization', 'probability')
xlabel('$E$', 'Interpreter', 'LaTeX')
ylabel('$P(E)$', 'Interpreter', 'LaTeX')
title(['Configuration Probability at $k_BT =$ ', num2str(kT)
      'Interpreter', 'LaTeX')
134
135 figure (3)
136 plot (4000:6000, var(E_stable)/N)
xlabel('Cycles', 'Interpreter', 'LaTeX')
ylabel('$\sigma_E^2$', 'Interpreter', 'LaTeX')
title(['Energy Variance at $k_BT =$ ', num2str(kT)], ...
      'Interpreter', 'LaTeX')
140
141 %}
142
143
144
146 %Plot observables vs cycles
147 %{
148 figure (4)
149 subplot (2,2,1)
plot(1:sweepsPerSimulation, mean(E_transient)./N, 'b')
title('Energy')
xlabel('Cycles', 'Interpreter', 'LaTeX')
ylabel('$E/N$', 'Interpreter', 'LaTeX')
155 subplot (2,2,2)
plot(1:sweepsPerSimulation, mean(M_transient), 'b')
title('Magnetization')
xlabel('Cycles', 'Interpreter', 'LaTeX')
ylabel('$\langle |M| \rangle / N$', 'Interpreter', 'LaTeX')
161 subplot (2,2,3)
plot(1:sweepsPerSimulation, C_transient./N, 'b')
title('Heat Capaticity')
xlabel('Cycles', 'Interpreter', 'LaTeX')
ylabel('$C_V/(Nk_B)$', 'Interpreter', 'LaTeX')
166
167 subplot (2,2,4)
plot(1:sweepsPerSimulation, Chi_transient, 'b')
169 title('Magnetic Susceptibility')
xlabel('Cycles', 'Interpreter', 'LaTeX')
ylabel('$\chi/N$', 'Interpreter', 'LaTeX')
172 %}
```

```
173
174
176
178 %Plot observables vs temperature
179 figure (5)
180 subplot (2,2,1)
plot(kT, Energy./N, 'b')
182 title('Energy')
xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$E$', 'Interpreter', 'LaTeX')
185
186 subplot (2,2,2)
plot(kT, Magnetization, 'b')
188 title('Magnetization')
xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$\langle |M| \rangle / N$', 'Interpreter', 'LaTeX')
192 subplot (2,2,3)
193 plot(kT, C./N, 'b')
194 title('Heat Capaticity')
195 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$C_V/k_B$', 'Interpreter', 'LaTeX')
197 ylim([0,2])
198
199 subplot (2,2,4)
200 plot(kT, Chi, 'b')
201 title('Magnetic Susceptibility')
202 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$\chi$', 'Interpreter', 'LaTeX')
204
205
206
207
208
210 %Plot Numerical vs Analytical
211 %{
212 E_true = zeros(1,length(kT));
213 M_true = zeros(1,length(kT));
214 Cv_true = zeros(1,length(kT));
215 Chi_true = zeros(1,length(kT));
216 for i = 1:length(kT)
beta = 1/kT(i);
```

```
E_true(i) = E_analytic(beta, J, h, N);
       M_true(i) = M_analytic(beta, J, h, N);
219
       Cv_true(i) = Cv_analytic(beta, J, h, N);
220
       Chi_true(i) = Chi_analytic(beta, J, h, N);
222 end
224 figure (4)
225 subplot (2,2,1)
226 hold on
plot(kT, Energy./N, 'b')
plot(kT, E_true, 'r')
229 hold off
230 title('Energy')
231 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$E$', 'Interpreter', 'LaTeX')
234 subplot (2,2,2)
235 hold on
236 plot(kT, Magnetization, 'b')
plot(kT, M_true, 'r')
238 hold off
239 title('Magnetization')
240 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$\langle |M| \rangle / N$', 'Interpreter', 'LaTeX')
242
243 subplot (2,2,3)
244 hold on
245 plot(kT, C./N, 'b')
246 plot(kT, Cv_true, 'r')
247 hold off
248 title('Heat Capaticity')
249 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$C_V/k_B$', 'Interpreter', 'LaTeX')
251 ylim([0,0.5])
252
253 subplot (2,2,4)
254 hold on
255 plot(kT, Chi, 'b')
plot(kT, Chi_true, 'r')
257 hold off
258 title('Magnetic Susceptibility')
259 xlabel('$k_BT$', 'Interpreter', 'LaTeX')
ylabel('$\chi$', 'Interpreter', 'LaTeX')
261 ylim([0,0.05])
262 %}
```

```
263
264
265
267 %Analytic expression for the energy of the lattice (2x2 case)
   function [result] = E_analytic(beta, J, h, N)
270 result = -(1/Z(beta,J,h)) * ((8*J+4*h)*exp(beta*(8*J+4*h)) +
       8*h*exp(2*beta*h) - 16*J*exp(-8*beta*J) - 8*h*exp(-2*beta*f)
      *h) ...
      + (8*J - 4*h)*exp(beta*(8*J-4*h))) / N;
273
274 end
275
276 %Analytic expression for the mean magnetization of the
      lattice (2x2 case)
  function [result] = M_analytic(beta, J, h, N)
277
result = 1/(beta * Z(beta,J,h)) * (4*beta*exp(beta*(8*J+4*h))
       8*beta*exp(2*beta*h) + 8*beta*exp(-2*beta*h) + ...
280
       4*beta*exp(beta*(8*J-4*h))) / N;
282
   end
283
284
  function [result] = Cv_analytic(beta, J, h, N)
286
  result = (((8*J+4*h)^2*exp(beta*(8*J+4*h)) + ...
287
       16*h^2*exp(2*beta*h) - 128*J^2*exp(-8*beta*J) - 16*h^2*
288
      exp(-2*beta*h) ...
       + (8*J - 4*h)^2*exp(beta*(8*J-4*h))) * Z(beta,J,h) - ...
       ((8*J+4*h)*exp(beta*(8*J+4*h)) + ...
290
       8*h*exp(2*beta*h) - 16*J*exp(-8*beta*J) - 8*h*exp(-2*beta*f)
291
       + (8*J - 4*h)*exp(beta*(8*J-4*h)))^2) / Z(beta,J,h)^2 *
      beta^2/N;
  end
294
  function [result] = Chi_analytic(beta, J, h, N)
296
  result = ((16*beta^2*exp(beta*(8*J+4*h)) + ...
298
       16*beta^2*exp(2*beta*h) + 16*beta^2*exp(-2*beta*h) + ...
       16*beta^2*exp(beta*(8*J-4*h)))*Z(beta,J,h) - ...
300
```

```
((4*beta*exp(beta*(8*J+4*h)) + ...
301
       8*beta*exp(2*beta*h) + 8*beta*exp(-2*beta*h) + ...
302
       4*beta*exp(beta*(8*J-4*h)))^2) / (beta * N^2 * Z(beta, J))
303
      ,h)^2);
304
  end
305
306
  %Analytic partition function (2x2 case)
  function [result] = Z(beta,J,h)
310 result = \exp(beta*(8*J+4*h)) + 4*\exp(2*beta*h) + 4 + 2*exp
      (-8*beta*J) ...
       + 4*exp(-2*beta*h) + exp(beta*(8*J-4*h));
312
313 end
% Hamiltonian, J * sum_{i,j}(s_i*s_j) - h * sum_i(s_i)
316 function [result] = H(S,L,M,J,h)
318 %Sum over "nearest neighbours" at the spin S(n,m). Recall
      a = n-1, b = n+1, c = m-1, d = m+1.
319 %
neighbours = Q(n,m) S(n,m)*S(a(n,L),m) + S(n,m)*S(b(n,L),m) +
321
       S(n,m)*S(n,c(m,M)) + S(n,m)*S(n,d(m,M));
322
323 %Sum over all nearest neighbors for each spin in the lattice
_{324} %and sum over all spins. The factor of 1/2 accounts for the
      double counting.
325
326 P = 0; G = 0;
327 for i = 1:L
       for j = 1:M
328
           P = P + neighbours(i,j);
           G = G + S(i,j);
330
       end
332 end
334 result = -1/2 * J*P - h*G;
336 end
338 %Energy of a single spin S(n,m)
  function [result] = Espin(S,n,m,L,M,J,h)
340
```

```
341 %Sum over "nearest neighbours" at the spin S(n,m). Recall
      that
342 \% a = n-1, b = n+1, c = m-1, d = m+1.
343 %The factor of 1/2 accounts for the double counting.
344 neighbours = (S(n,m)*S(a(n,L),m) + S(n,m)*S(b(n,L),m) + ...
       S(n,m)*S(n,c(m,M)) + S(n,m)*S(n,d(m,M)));
346
347 G = S(n,m);
349 result = -J*neighbours - h*G;
350
351 end
352
353 %Mean magnetization
354 function [result] = Mmean(S)
356 result = abs(mean(mean(S)));
357
358 end
359
360 %The following four functions allow me to implement the
      periodic boundary
361 %conditions
362 function [result] = a(n,L)
363 if n == 1
       result = L;
364
365 else
       result = n-1;
366
367 end
368 end
369 function [result] = b(n,L)
370 if n == L
       result = 1;
372 else
       result = n+1;
373
374 end
375 end
376 function [result] = c(m, M)
377 if m == 1
       result = M;
379 else
380
       result = m-1;
381 end
382 end
383 function [result] = d(m, M)
```